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Abstract

In this paper we study a multistage game of competition among sellers in the

design of trade mechanisms. First, sellers simultaneously choose trade mechanisms

from the class of anonymous and incentive-compatible mechanisms. Second, upon

observing the sellers’ “offers”, each buyer decides which seller to visit, if any. Third,

buyers learn their valuations and the number of bidders participating in the same

mechanism. Finally, bidders report their valuations, the mechanisms are operated

and the transactions take place. We provide conditions for the existence of a pure

strategy symmetric subgame perfect equilibrium mechanisms for any number of

buyers and sellers. The equilibrium mechanisms are auctions with a trivial (zero

cost) reservation price and an entrance fee. An equilibrium is derived in which the

entrance fee is independent on the number of participating bidders. We derive the

equilibrium fee as a function of the buyers’ valuations and the value of the outside

option. The paper contributes to the literature on the topic by proving the existence

and solving for the subgame perfect equilibrium of the general mechanism design

problem in the finite buyer and seller case.
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1 Introduction

In this paper we will address the question of what kind of trade mechanisms would arise

in a strategic equilibrium of an oligopoly market, in which several sellers compete for a

common pool of customers by designing trade mechanisms. Our analysis will be conducted

within the independent private value model, in which buyers’ valuations are privately

observed and drawn from identical distributions. We will analyze a market game with

the following time structure. In the first stage of the game sellers, who possess a single

unit of a homogeneous good, simultaneously choose trade mechanisms from the class of

anonymous and incentive-compatible mechanisms (see Myerson (1981)). In the second

stage, upon observing the choice of the sellers, each buyer decides which seller to visit, if

any. Randomizing over the sellers’ mechanisms is allowed. In the third stage buyers learn

their valuations and the number of their competitors participating at the same mechanism

and submit their bids. Finally, the mechanisms are operated and the transactions take

place.

The present inquiry belongs to a growing literature on mechanism design by competing

sellers, which has been initiated by McAfee (1993). This literature studies the relationship

between trade mechanisms offered by sellers and bidders’ distribution across sellers as

well as the consequences of this relationship for the sellers’ choice of trade mechanisms in

equilibrium.

It has basically two complex problems to deal with. The first one is to determine the

equilibrium distribution of bidders across sellers for every profile of offered mechanisms.

The second one is to solve for the equilibrium in sellers’ trade mechanisms in the first

stage of the game.

McAfee (1993) deals with the first problem by suggesting a new equilibrium concept,

which he terms competitive subform consistent equilibrium (CSCE). It requires that every

seller ignore his influence on the expected profits offered to buyers by other sellers. This

assumption is applicable to a market with an infinite number of buyers and sellers, in

which each seller’s decision has no effect on the distribution of buyers across the other

mechanisms, but is not appropriate for finite economies. Peters and Severinov (1997)

propose a new limit equilibrium concept, competitive matching equilibrium (CME), which

justifies McAfee’s conjecture for a large number of market participants on both sides of

the market.

The second problem relates to the complexity of the sellers’ strategy space and is basi-

cally circumvented by significantly restricting the class of possible mechanisms. Burguet

and Sakovics (1999), Peters and Severinov (1997) and Hernando-Veciana (2005) restrict
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the sellers’ strategy space to second price auctions in which the sellers choose their reser-

vation price. This assumption is convenient, because a trade mechanism can be described

by a single variable. Burguet and Sakovics (1999) show that in the two-seller case reserve

prices are not driven down to production costs and the mixed strategy1 symmetric sub-

game perfect equilibrium (SPE) is inefficient. Hernando-Veciana (2005) demonstrates,

that for any finite set of feasible reserve prices, reserve prices in a (SPE) go down to

production costs if the numbers of auctioneers and bidders is sufficiently large, but finite.

In the present paper we will opt for neither of the solutions. On the one hand we

will be interested in the (SPE) of the above described auction game, capturing all the

repercussions that a change in a seller’s mechanism has on the payoffs of the bidders with

other mechanisms. On the other hand we will not be restricting the strategy space of the

sellers, thus dealing directly with the general mechanisms design problem. As in McAfee

(1993) we will find the equilibrium trade mechanisms are auctions: the object should go

to the highest value bidder. The equilibrium auctions have zero (cost) reservation price,

but involve an entrance fee, which might depend on the number of bidders. We provide

conditions for the existence of a unique symmetric equilibrium in which the entrance

fee does not depend on the number of participants. The participation fee is derived as

a function of the distribution of buyer’s valuations and the option of not entering the

market. The paper contributes to the existing literature on the topic by solving the

general mechanism design problem for the finite buyer and seller case. The use of second

price auctions with entrance fees or any other payoff equivalent auction is here a derived

result and not an assumption.

Generally two models have been suggested in the literature. The first one assumes that

buyers learn their valuation after visiting a seller and inspecting the good on offer. The

second one assumes that the buyers know their valuation prior to deciding which seller to

visit. McAfee (1993), Burguet and Sakovics (1999) and Hernando-Veciana (2005) consider

the former variant. Wolinsky (1988) considers the first one but in his model the matching

technology of buyers and sellers is random and exogenous. Peters and Severinov (1997)

analyze both cases for their limiting equilibrium concept. Both variants can be considered

as benchmark cases. The former one is reasonable, if buyers need some time to study the

good to form their valuation. If however bidders search for some predefined attributes,

the latter one will be more appropriate. It is however much more difficult to analyze, since

the decision to visit a particular seller depends additionally on the valuation of the bidder.

How bidders with different valuations distribute over the sellers’ mechanism according to

their valuation in equilibrium is a difficult problem to solve. It still remains an open issue

1In their model the existence of pure strategy equilibria is not guaranteed.
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in its finite version, in which sellers are free to choose any direct mechanism.

We show that the first problem is tractable even for a finite number of buyers and

sellers and a very general sellers’ strategy space. Peters and Severinov (1997, pp. 147-

153) consider this case, but restrict the strategy space to second price auctions with a

reserve price. Surprisingly, this restriction of the strategy space leads to problems with

the existence of a (SPE). Burguet and Sakovics (1999, p. 240) provide an example for

the nonexistence of a (SPE) in pure strategies in a market of two sellers and two buyers,

whose valuation are drawn from a uniform distribution with support [0, 1].

The paper is organized as follows. In the next section we will present the model:

the general framework, the strategy space of buyers and sellers, their payoffs as well

as the concept of a (SPE). Section 3 contains the derivation of the basic results and

section 3.4 contains a numerical example for a (SPE) in a market of two sellers and two

buyers. Section 4 concludes with a discussion of the results and their implications for the

organization of some existing markets.

2 The model

2.1 Preliminaries

We consider an imperfectly competitive market with a number of J ≥ 2 sellers (females)

and I ≥ 2 buyers (males). All agents are risk neutral. Each seller possesses a unit of

a commodity, which she wishes to sell to a buyer. The use value equals across sellers

and without loss of generality is normalized to zero. The sellers compete in the market

by simultaneously choosing trade mechanisms. After observing the sellers’ “offers” the

buyers either choose a seller, whose trade mechanism to participate in or stay out of the

market exercising an outside option. Buyers are allowed to participate only in one trading

mechanism, but randomizing over the sellers’ trade mechanism and the outside option is

possible. Exercising the outside option2 is associated with a sure payoff of β ≥ 0 for

a buyer. Once a buyer selects a seller, he learns his valuation, which is a draw from a

random variable. After learning his valuation and the number of the bidders participating

in his mechanism, bidders participate in the mechanism by reporting their type. Finally,

the resulting allocation is implemented.

2The outside option can be broadly understood. It might for example be associated with the trans-

portation costs to arrive at the marketplace or the costs which a bidder spends to learn his own valuation.
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2.2 Notation

Buyers will be indexed by i and sellers by j. The valuation of buyer i, xi is private

information and a random draw from the interval [0, 1] according to the continuously

differentiable distribution function F . If a buyer participates in the mechanism of a

certain seller, he will be asked to report his private valuation to the mechanism. Since

the number of bidders visiting certain seller is not known ex-ante, the mechanism should

prescribe an allocation and a payment rule for any number (and identity) of bidders and

any realization of their valuations. Let us denote for that purpose the set of the subsets

(the power set) of all bidders by I and the power set of all rivals of bidder i by I−i. Let

s ∈ I denotes a group of bidders and xs the ordered vector3 of the valuations of bidders

from the group s. Further let Xs denote the set of all possible ordered vectors of their

valuations. Let

X ≡
⋃
s∈I

Xs

denote the set of all ordered vectors of the valuations of all subsets of bidders and x an

element of this set4. Similarly by X−i one denotes the set of the ordered vectors of the

valuations of all subsets of bidders except bidder i.

2.3 Sellers’ strategy space

Before defining the sellers’ strategy set, let us first denote the set

A ≡
{
{(pi, zi)}i∈I | (pi, zi) : X → [0, 1]× R

}
,

which contains all trade mechanisms satisfying the conditions (NP),(F) and (A) given

below. Generally, a trade mechanism is defined by the functions pi(·) for every bidder i,

which determine the probability, with which every bidder i receives the item and by the

functions zi(·), determining the payment of every bidder i to the mechanism.

• Non-participation condition:

pi(x
s) = 0, zi(x

s) = 0,∀i 6∈ s. (NP)

The condition requires that bidders who do not participate in a certain mechanism

don’t win the object and don’t pay.

3By ordered vector xs we refer to the vector of the valuations of the bidders from a subset s, in which

the components are ordered in an ascending order according to the bidder’s number.
4Note that the valuation of each bidder i, xi, might or might not appear in the vector x depending

on whether this bidder i participates in the mechanism or not.
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• Feasibility:

I∑
i=1

pi(x) ≤ 1, ∀x ∈ X. (F)

The feasibility conditions requires that for any realization of the private information

of the participating bidders the mechanism rules do not allow more units to be sold

than physically available. Here we allow also for mechanisms for which for some

realizations of x the inequality can be satisfied. This might for example be the case

if the mechanism is a second-price auction with a positive reservation price. I such a

case if the valuation of the participating bidders lie below the seller’s reserve price,

she will retain the item.

• (A) Anonymity :

Let

p(·) ≡
(
p1(·), p2(·), . . . , pI(·)

)
and z(·) ≡

(
z1(·), z2(·), . . . , zI(·)

)

denote the vectors of probability and allocation functions (respectively). The anonymity

condition requires that the functions p and z are permutation invariant. This means

that permuting the valuations of any ordered vector x ∈ X permutes the vectors

p(x) and z(x) in the same fashion. Let (xk, xl, x
s) denote the ordered vector of

the valuation of the bidders from the group s and the bidders l, k 6∈ s. Then the

permutation invariance implies:

pk(xk, xl, x
s) = pl(xl, xk, x

s),

zk(xk, xl, x
s) = zl(xl, xk, x

s),

pi(xk, xl, x
s) = pi(xl, xk, x

s),

zi(xk, xl, x
s) = zi(xl, xk, x

s),

∀l, k, ∀i ∈ s, ∀s. The anonymity or equal treatment guarantees that sellers do not

discriminate among buyers on characteristics different than their reports to the

mechanism or in other words the chances of winning and the payment are not de-

pendent on the buyers’ identities but solely on their reports to the mechanism.

McAfee (1993) and Peters (1994) also consider anonymous mechanisms and provide

equivalent definitions.

The set A, satisfying the above conditions, is larger than the sellers’ strategy set. We

will further narrow down the set of possible mechanisms among which the sellers can

choose by imposing additional conditions on the probability and payment functions.
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To define the sellers’ strategy space, which we will denote by Â, we impose the two

additional requirements.

• Incentive compatibility:

Let us assume that bidder i chooses to participate in mechanism j. He learns his

valuation xi (by inspecting the object for sale for example) and the fact that he

will compete for the object with the buyers from the set s ∈ I−i. We denote the

expected probability of winning and the expected payment of bidder i, who reports

the valuation x̃i, provided that the other participants report truthfully by

P s(x̃i) :=

∫
pi(x̃i, x

s)dF (xs),

Zs(x̃i) :=

∫
zi(x̃i, x

s)dF (xs).

The incentive compatibility requires, that bidder i finds it profitable to report truth-

fully if all other bidders do so, i.e. for every s ∈ I−i and every x̃i ∈ [0, 1] the following

inequality holds:

Es(x̃i | xi) ≡ xi · P s(x̃i)− Zs(x̃i)

≤ xi · P s(xi)− Zs(xi) ≡ Es(xi | xi) =: Es(xi). (IC)

Es(x̃i | xi) is the expected payment of a bidder, who has a valuation of xi and

reports the valuation x̃i to the mechanism.

There is indeed no loss of generality to restrict the sellers to use incentive compat-

ible mechanisms. In the present setting buyers submit bids after they learn their

valuations and the number of their fellow bidders (but not their valuations), so

the sellers’ mechanisms described here are standard Bayesian games for which the

revelation principle applies (see e.g. Myerson (1997, p. 260)).

• (R) Regularity:

Let us assume that bidder i participates in a certain mechanism j with a probability

of one and let all other bidders visit this mechanism with a probability of m. The

regularity condition requires that the expected payoff of a bidder from participating

in the mechanism j is (weakly) decreasing in the probability m. A formal definition

will be given later on after we define the bidders’ strategy space and their expected

payoff. Roughly speaking, the condition requires that a bidder’s expected payoff

decreases with increased competition for this mechanism.
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2.4 Bidders’ strategy space

Conditional on observing the mechanisms offered by the sellers, the bidders decide which

seller to visit. Although bidders are not allowed to visit more than one seller, randomizing

over the sellers is allowed. Thus, the bidders play a behavior strategy as they decide on

every node defined by a profile of trade mechanisms of the sellers, which seller to visit.

Eichberger (1993, pp. 22-24) offers a definition and a discussion on the behavior strategy

concept. The strategy of bidder i is a mapping from the set of possible vectors of trade

mechanism into probabilities, with which that bidder plans to visit each seller. We will

denote a strategy of bidder i by

mi =
(
mi

o(·),mi
1(·),mi

2(·) . . . , mi
J(·)

)
,

where

mi
j : ÂJ → [0, 1]; mi

o : ÂJ → [0, 1] and mi
o(·) +

J∑
j=1

mi
j(·) = 1.

It will be useful to represent a strategy profile of the bidders by the I × (J + 1) matrix

m(·) :=




m1
o(·) m1

1(·) m1
2(·) . . . m1

J(·)
m2

o(·) m2
1(·) m2

2(·) . . . m2
J(·)

. . . . . . . . . . . . . . .

mI
o(·) mI

1(·) mI
2(·) . . . mI

J(·)




.

A strategy profile of all bidders except bidder i will be denoted by m−i(·). We will say,

that the bidders use a symmetric behavioral strategy, if the functions in every column of

the matrix are identical. A symmetric strategy profile will be denoted by

(
mo(·),m1(·),m2(·), . . . , mJ(·)).

2.5 Payoffs

Let us denote by m−i
j (p, z) the vector of probabilities with which all bidders except i visit

mechanism j (this is the j−th column in the above matrix, except the probability of

bidder i). If bidder i visits mechanism j with a probability of one, then his payoff is given

by

Ri
j

(
(pj, zj); m−i

j (p, z)
)

=
∑

s∈I−i

∏

l∈s

ml
j(p, z) ·

∫ 1

0

Es
j (xi)dF (xi).

In the payoff of bidder i one sums the products of the probabilities with which bidder i

encounters any group of rivals and his expected payoff in case that this group of rivals is
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encountered. The payoff of seller j is

Πj

(
(p, z); m(p, z)

)
=

I∑
i=1

mi
j(p, z) ·

( ∑

s∈I−i

∏

l∈s

ml
j(p, z) ·

∫ 1

0

Zs
j (xi)dF (xi)

)
,

which is the sum of the expected payments of the bidders to the mechanism j. Since we

consider anonymous mechanisms, the functions Es
j (xi), Zs

j (xi) and P s
j (xi) depend only

on the number of rivals of bidder i (in the set s) and not on their identity. Therefore

for simplicity from now on we will use the notation E
(n)
j (xi), Z

(n)
j (xi) and P

(n)
j (xi) when

describing the payoff, the payment and the probability with which bidder i is served when

he faces (n− 1) rivals. If all rivals of bidder i visit mechanism j with a probability of m,

then his payoff from participating with a probability of one is

Ri
j

(
(pj, zj); m

)
=

I∑
n=1

(
I − 1

n− 1

)
mn−1(1−m)I−n ·

∫ 1

0

E
(n)
j (xi)dF (xi).

If all bidders visit mechanism j with probability m, then the expected profit of seller j is

Πj

(
(pj, zj); m

)
=

I∑
n=1

(
I

n

)
mn(1−m)I−n ·

∫ 1

0

Z
(n)
j (xi)dF (xi).

Now, we can formally define the regularity condition introduced in subsection (2.3).

Definition 1 (R). A mechanism (pj, zj) is regular if the function Ri
j

(
(pj, zj); m

)
is

(weakly) decreasing in m.

The regularity condition is satisfied by the standard auction formats. We will show

that all payoff equivalent mechanisms to a second price auction with an entrance fee, which

does not depend on the number of participating bidders, are regular mechanisms5 (see

lemma 2). The regularity condition is not satisfied for example by mechanisms according

to which the seller imposes high participation fees if a low number of bidders participate

and a low participation fee (or even a bonus) if many bidders visit the mechanism. In

such a situation an increased competition can lead to higher expected payoffs for the

participants.

If bidder i employs the behavioral strategy mi(p, z), his payoff is:

Ri

(
(p, z); m(p, z)

)
= mi

o(p, z) · β +
J∑

j=1

mi
j(p, z) ·Ri

j

(
(pj, zj),m−i(p, z)

)
.

5One can easily show that the second price auction with a non-trivial reserve price is a regular mech-

anism as well (the proof of this claim emulates the proof of lemma 2, which is given in Appendix A).
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As already indicated, after arriving at the mechanism, buyers learn their valuation (for

example by inspecting the item for sale) and the number of their fellow bidders partici-

pating at that mechanism. As we require that the mechanisms are incentive-compatible,

bidders report their valuations truthfully, the mechanisms are operated and the transac-

tions take place.

2.6 Equilibrium

In this model we will be interested in the symmetric subgame perfect equilibria of the

model, which are defined as follows.

Definition 2. The sellers’ strategy profile (p∗, z∗) and the symmetric selection behavioral

strategy functions of the bidders represented by the matrix m∗(·) constitute a symmet-

ric subgame perfect equilibrium (short: equilibrium), if they satisfy the following

conditions:

1. (Optimal selection by buyers):

Ri

(
(p, z); m∗i(p, z),m∗−i(p, z)

) ≥ Ri

(
(p, z); mi,m∗−i(p, z)

)
,

∀(p, z) ∈ ÂJ ,∀i, ∀mi ∈ [0, 1].

2. (Nash equilibrium play in the reduced form of the game):

Πj

(
(p∗j, z∗j), (p∗−j, z∗−j); m∗(·)

)
≥ Πj

(
(pj, zj), (p∗−j, z∗−j); m∗(·)

)
,∀(pj, zj) ∈ Â.

(NE)

3. (Symmetry): All sellers use the same trade mechanism.

The first equilibrium condition requires that in each subgame defined by the sellers’

choice of mechanisms the bidders randomize symmetrically over the mechanisms, i.e. they

play symmetric behavior strategies, which constitute a Nash equilibrium in the second

stage of the game. The second condition requires that the sellers choose mechanisms,

which build a Nash equilibrium in the first stage of the game.

3 Analysis

3.1 Organization of the analysis and results

In this work we will show that in equilibrium sellers hold auctions (Theorem 1). Holding

auctions in this setting amounts to using a trade mechanism, which assigns the unit to
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A Â Ω Ω̂

Non-Participation + + + +

Feasibility + + + +

Anonymity + + + +

Incentive Compatibility + + +

Regularity + + +

Efficiency + +

Constant entrance fee +

Table 1: Mechanism sets and conditions.

the participant with the highest valuation (see McAfee (1993, p. 1292) and the exposition

of the next subsection). To summarize the results and explain the arguments behind the

proofs Table 1 will be helpful. The rows in this table represent conditions imposed on trade

mechanisms. The first five conditions are already defined. The “Efficiency” condition

requires that the object should always be granted to the participant with the highest

valuation. The “Constant entrance fee” condition requires that the seller uses an auction

with an entrance fee, which does not depend on the number of bidders participating at the

mechanism. The + sign denotes which conditions are satisfied by the mechanisms from

the sets A, Â, Ω and Ω̂. The sets A and Â are already defined. Â is the sellers’ strategy set.

Lemma 1 derives the profit maximizing mechanisms (for a seller) among all mechanisms

from the set A which give every participating bidder a constant expected payment (of

R∗), provided that all bidders visit this mechanism with a certain probability (of m∗). It

states that the profit-maximizing mechanism should be efficient, i.e. the object should

go to the participant with the highest valuation. As a consequence of the lemma one

narrows down substantially the set of mechanism, which can constitute an equilibrium in

the game with strategy set Â. After imposing additionally the (IC) and (R) conditions

only the mechanisms from the set Ω remain as possible equilibria. This set consists only

of auctions with a zero-reserve price and an entrance fee, which might depend on the

number of the bidders (this argument rests on a standard results from the theory). In

the exposition later on we will discuss this argument in more detail. We further are

restricting attention only to the set Ω̂, which consists of auctions with an entrance fee

independent on the number of bidders visiting the mechanism. In Theorem 2 we show

however that if a strategy profile of the sellers is an equilibrium in the game with strategy

space Ω̂, it is also an equilibrium in the game with a strategy space Ω. It follows that this

equilibrium strategy profile constitutes also an equilibrium with the game with strategy
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space Â. Theorem 3 provides conditions for the existence of equilibrium (within the set

Ω̂) and characterizes the equilibrium trade mechanism.

3.2 Theorems and proofs

Theorem 1. (i) The sellers’ equilibrium mechanisms (provided that an equilibrium ex-

ists) assigns the item (almost surely) to the highest-valuation bidder, if this valuation

is higher than the seller’s use value.

(ii) The equilibrium mechanisms are payoff equivalent to a second price auction with a

reserve price equal to the seller’s valuation and an entrance fee, which might depend

on the number of participating bidders.

This theorem establishes some equilibrium properties without resolving the question

of existence of an equilibrium. We shall deal later on with this problem by providing

conditions which guarantee the existence and uniqueness of a symmetric equilibrium in

this market game for an arbitrary number of sellers and buyers. The present theorem is

useful, as it restricts the type of mechanism profiles, which can constitute an equilibrium.

This initial result will further be employed for the characterization of equilibrium and for

the existence and uniqueness proof itself.

Proof. For part (i) we will proceed by contradiction. Take an equilibrium profile (p∗, z∗)

and let in this equilibrium buyers visit a certain mechanism j with probability m∗. Let the

expected profit of a buyer participating in the mechanism of seller j be denoted by E∗.

We will show that if the equilibrium mechanism (pj∗, zj∗) does not satisfy the condition

of part (i) of the theorem, one can construct a deviation mechanism (pjD, zjD) ∈ Â which

assigns the object to the highest valuation bidder and does not change the equilibrium

probability with which buyers visit that seller. We show that this mechanism is more

profitable for the seller, reaching a contradiction to the equilibrium requirement (NE).

We start with the following lemma.

Lemma 1. The profit maximizing mechanisms for an arbitrary seller j, among all mech-

anisms from the set A which give every participating bidder an expected payment of R∗,

provided that all bidders visit this mechanism with probability m∗, assign the object with

probability one to the participant with the highest valuation, if this valuation exceeds the

seller’s use value.

A formal proof of the lemma is provided in the Appendix A. The statement is closely

related to an argument provided by McAffee and McMillan (1987b), which concerns a

setting with one seller and an outside option. Their argument is useful to understand the
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idea of the current proof and therefore will be shortly sketched here. For any number

of participating bidders the seller’s expected revenue is the winning bidder’s expected

valuation minus the expected profit of the participating bidders. Thus, for any given

number of participating bidders the seller should award the good so as to maximize the

expected valuation of the winner. This can only be done by awarding the good to the

highest valuation bidder whenever this valuation exceeds the seller’s reserve value6.

Observe that the lemma does not require that the mechanisms satisfy the incentive

compatibility constraint (IC) or the regularity condition (R). If we found a deviation

mechanism (pjD, zjD) which belongs to the set Â (i.e. satisfies additionally the conditions

(IC) and (R)) and does not change the probability distribution of buyers across sellers,

then from the lemma would follow that this deviation is profitable.

Observe that a bidder participating in the mechanism of seller j might face any number

of 0 to I−1 bidders. Let n ∈ {1, 2, . . . , I} denote the total number of bidders participating

in the mechanism of that seller j. The winning probability of bidder i with valuation xi who

reports valuation x̃i, if the other (n− 1) bidders report truthfully is P n
i (x̃i) ≡ [F (x̃i)]

n−1.

By the Envelope theorem one obtains for the derivative of the payoff of bidder i at an

incentive-compatible mechanism7 which awards the good to the highest valuation bidder:

d

dxi

(E(n)(x̃i | xi)) =
∂

∂xi

(En(x̃i | xi))

∣∣∣∣
x̃i=xi

= [F (xi)]
n−1.

The expected profit is

E(n)(xi | xi) = Cn +

∫ xi

0

[F (xi)]
n−1dxi,

where Cn is the expected profit of a bidder with the lowest valuation 0. Cn is thus the

entrance fee or bonus, which each bidder has to pay or receives, when participating in the

mechanism with (n − 1) other bidders. From the theory of optimal auctions8 it is know

that the (ex ante) expected payment of a bidder participating with (n− 1) other bidders

in an incentive-compatible mechanism with 0 entrance fee, which assigns the object to

the highest value bidder is

Bn =

∫ 1

0

∫ x

0

[F (z)]n−1dzdF (x).

The expected profit of a seller who auctions an item to n bidders is

Sn = n ·
∫ 1

0

[x · f(x) + F (x)− 1] · [F (x)]n−1dx.

6In our setting the seller’s reserve value is 0 and the bidders’ valuations are distributed on the interval

[0, 1], so they are almost surely higher than the seller’s reserve value.
7Here we follow the exposition in McAffee and McMillan (1987b).
8See for example Riley and Samuelson (1981) or McAffee and McMillan (1987a).
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All these mechanism are payoff equivalent to a second price auction with a zero reservation

price.

A mechanism from the set Ω can now be identified only by the participation fee for

any number of participants and will be denoted by (C1, C2, . . . , CI). For constructing the

deviation mechanism consider a mechanism (C, C, . . . , C︸ ︷︷ ︸
I

) requiring the same participation

fee independent on the number of the bidders9. Consider the following lemma.

Lemma 2. All incentive compatible mechanisms involving an entrance fee, which is in-

dependent on the number of participants, are regular mechanisms.

The proof is somewhat technical and not of interest in itself. It is moved to Appendix

A. The lemma guarantees that this deviation mechanism indeed belongs to the set Â.

The expected profit of a bidder from participating in the deviation mechanism, if every

other bidder participates with probability m∗ is

E∗ =
I−1∑
n=0

Bn+1 ·
(

I − 1

n

)
(m∗)n(1−m∗)I−1−n − C.

Choosing a participation fee of

I−1∑
n=0

Bn+1 ·
(

I − 1

n

)
(m∗)n(1−m∗)I−1−n − E∗

would present the desired deviation mechanism. It remains to be verified, that this de-

viation will not reshuffle the probability distribution of bidders across sellers. This is

guaranteed by the regularity condition imposed on the strategy set Â. This condition

precludes the cases in which a bidder participating in a certain mechanism obtain the

same payoff in cases in which the other bidders visit this mechanism with a different

probability. Indeed, if each bidder visits mechanism j with a probability higher than m∗,

then the expected profit of each bidder will fall below E∗, whereas the expected profit

with other mechanism will increase above E∗. On the other hand, if each bidder visits

mechanism j with a probability lower than m∗, then the bidders’ expected profit with j

will rise and the expected profit with other mechanisms will fall. In sum, the bidders’

selection stage of the game will not be in equilibrium for any probability of visiting j,

which is different than m∗.

Recall that we denoted the set of incentive compatible and regular mechanisms, in

which the highest valuation bidder wins and the entrance fee is independent on the number

of participating bidders by Ω̂. One can state the following theorem.

9There are many ways to construct a deviation mechanism. This is one of the variants.
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Theorem 2. If the sellers’ strategy profile

(
(C∗, C∗, . . . , C∗
︸ ︷︷ ︸

I

), (C∗, C∗, . . . , C∗
︸ ︷︷ ︸

I

), . . . , (C∗, C∗, . . . , C∗
︸ ︷︷ ︸

I

)

︸ ︷︷ ︸
J

)

is an equilibrium profile of the game with strategy space Ω̂, then it is also an equilibrium

profile in the game with strategy space Ω.

The theorem is useful for the proof of the existence of equilibrium in the original game

(with a strategy set Â). The next theorem will assert that the game with strategy space

Ω̂ has an equilibrium. From the present theorem and theorem 1 follows then that the

original game has the same equilibrium profile.

Proof. Take an equilibrium strategy (C∗, C∗, . . . , C∗
︸ ︷︷ ︸

I

) and assume by a way of contradic-

tion that there exists a profitable deviation of an arbitrary seller j, which we denote by

(C̃1, C̃2, . . . , C̃I) ∈ Â. Let us assume that this strategy induce an equilibrium participation

probability of m̃ and as the deviation is profitable we have

Πj

(
(C̃1, C̃2, . . . , C̃I); m̃

)
> Πj

(
(C∗, C∗, . . . , C∗
︸ ︷︷ ︸

I

); m∗
)
.

The expected profit of bidder i is

Ri
j

(
(C̃1, C̃2, . . . , C̃I); m̃

)
=

I∑
n=1

(
I − 1

n− 1

)
m̃n−1(1− m̃)I−n ·Bn

−
I∑

n=1

(
I − 1

n− 1

)
m̃n−1(1− m̃)I−n · C̃n

and of the seller

Πj

(
(C̃1, C̃2, . . . , C̃I); m̃

)
=

I∑
n=1

(
I

n

)
m̃n(1− m̃)I−n · Sn

+
I∑

n=1

(
I

n

)
m̃n(1− m̃)I−n · n · C̃n.

Since we consider only regular mechanisms the strategy (C̃, C̃, . . . , C̃︸ ︷︷ ︸
I

) ∈ Â, where

C̃ =
I∑

n=1

(
I − 1

n− 1

)
m̃n−1(1− m̃)I−n · C̃n
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induces the same unique participation probability m̃ and leads to the same expected

bidder’s payoff:

Ri
j

(
(C̃1, C̃2, . . . , C̃I); m̃

)
= Ri

j

(
(C̃, C̃, . . . , C̃︸ ︷︷ ︸

I

); m̃
)
.

The payoff of the seller is

Πj

(
(C̃, C̃, . . . , C̃︸ ︷︷ ︸

I

); m̃
)

=
I∑

n=1

(
I

n

)
m̃n(1− m̃)I−n · Sn

+ I · m̃ · C̃.

One can readily observe now that

I∑
n=1

(
I

n

)
m̃n(1− m̃)I−n · n · C̃n = I · m̃ ·

I∑
n=1

(
I − 1

n− 1

)
m̃n−1(1− m̃)I−n · C̃n

= I · m̃ · C̃ ⇔
Πj

(
(C̃1, C̃2, . . . , C̃I); m̃

)
= Πj

(
(C̃, C̃, . . . , C̃︸ ︷︷ ︸

I

); m̃
)
.

Indeed, (C̃, C̃, . . . , C̃︸ ︷︷ ︸
I

) is so constructed that the expected payment of each bidder to seller

j equals the expected payment under the deviation strategy (C̃1, C̃2, . . . , C̃I) if both mech-

anisms are visited with the same probability of m̃. Therefore the expected fees that the

seller obtains from every bidder are equal in both mechanisms. The resulting (in)equalities

Πj

(
(C̃, C̃, . . . , C̃︸ ︷︷ ︸

I

); m̃
)

= Πj

(
(C̃1, C̃2, . . . , C̃I); m̃

)
> Πj

(
(C∗, C∗, . . . , C∗
︸ ︷︷ ︸

I

); m∗
)

establish the desired contradiction to the equilibrium assumption.

To summarize, we assumed by contradiction that a certain strategy profile is an equi-

librium of the game with the strategy space Ω̂ and not an equilibrium of the game with

the strategy space Ω. As a consequence for one bidder a profitable deviation strategy

from the set Ω exists. Then however we demonstrate that a profitable deviation strategy

from the set Ω̂ also exists, which poses a contradiction to the equilibrium assumption.

The next theorem will characterize the equilibria for the game with strategy set Ω̂.

For that purpose we will introduce some addition notation. Let us denote the expected

payoff of a bidder participating in a second price auction with a zero entrance fee if all

other bidders visit this mechanism with a probability of m by

R(m) :=
I∑

n=1

(
I − 1

n− 1

)
(m)n−1 · (1−m)I−n ·Bn.
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Let all sellers except seller j play the strategy (C, C, . . . , C︸ ︷︷ ︸
I

), and let seller j employ the

strategy (Cj, Cj, . . . , Cj

︸ ︷︷ ︸
I

). Let m(Cj, C) be defined as the solution of the equation

R(m) − Cj = R( 1−m
J−1

) − C

and m(Cj, β) be the solution of the equation

R(m) − Cj = β.

The function m(Cj, C) determines the probability with which bidders visits seller j, pro-

vided that they use the outside option with a probability of 0. The function m(Cj, β)

determines the probability with which bidders will visit seller j, provided that they ran-

domize between the outside option and the mechanism of seller j. Let Πj(C
j; m) denote

the payoff of seller j if she holds an auction with a participation fee of Cj (independent on

the number of participants) and all other bidders visit this mechanism with a probability

of m. Define the functions

ϕ(C) :=
∂Πj

(
Cj; m(C,Cj)

)

∂Cj

∣∣∣∣
Cj=C

and

ϕ(Cj, β) :=
∂Πj

(
Cj; m(β,Cj)

)

∂Cj
.

Theorem 3 (equilibrium). The game with strategy space Ω̂ has a unique symmet-

ric subgame perfect equilibrium in pure strategies if the functions Πj

(
Cj; m(C, Cj)

)
and

Πj

(
Cj; m(β,Cj)

)
are concave with respect to Cj. The equilibrium fee is

C∗(β) =





C for β ≤ R(1/J) − C,

max{R(1/J) − β, C(β)} for β > R(1/J) − C,

where C is the unique solution of the equation ϕ(C) = 0 and C(β) is the unique solution

of the equation ϕ(Cj, β) = 0.

See Appendix B for a proof and figure 1 for a graphical illustration. Next we will

investigate which markets satisfy the premises of the above theorem.

3.3 Concavity of the payoff functions

Theorem 3 provides a condition for the existence and uniqueness of equilibrium, which

requires that the payoff functions Πj

(
Cj; m(C, Cj)

)
and Πj

(
Cj; m(β, Cj)

)
are concave
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C∗(β)

C

βR(1/J) − C R(1/J)

R(1/J) − β

C(β)

Figure 1: The unique equilibrium entrance as a function of the outside option (the solid line).

in Cj. Although we could not find an example in which this property is not satisfied, we

also could not show that this property is satisfied for all probability distributions F and

any number of buyers and sellers. In this section we will show that in small markets (in

the cases of two sellers and two or three buyers) the functions are convex for all F and

there always exists a unique equilibrium. A unique equilibrium exists also for any number

of at least up to 100 buyers and sellers if F is uniformly distributed. If β is sufficiently

high and F is uniformly distributed an equilibrium exist for any number of buyers and

sellers. The next two theorems establish these results.

Theorem 4. In the cases J = 2 and I ∈ {2, 3} the functions Πj

(
Cj; m(C,Cj)

)
and

Πj

(
Cj; m(β,Cj)

)
are concave in Cj for any distribution F.

Theorem 5. If F is uniformly distributed over the unit interval the function

Πj

(
Cj; m(β, Cj)

)

is concave for any number of I ≥ 2 buyers and J ≥ 2 sellers.

The proofs are in Appendix B.

3.4 Numerical example: two buyers and two sellers

Claim 1. If two sellers compete for two buyers (i.e. I=J=2) the equilibrium entrance fee

is

C∗(β) =





S2/2 for 0 ≤ β < B2,

B2 + S2/2− β for B2 ≤ β ≤ B2 + S2/2,

0 for β > B2 + S2/2.
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C∗(β)

S2/2

βB2 B2 + S2/2

B2 + S2/2− β

Figure 2: Entrance fee in a subgame perfect equilibrium in the case I = J = 2 (the solid line).

See Appendix B for a proof and Figure 2 for a graphical illustration of the equilibrium

entrance fee. The equilibrium probability with which bidders visit an arbitrary seller

j ∈ {1, 2, . . . , J} is given as follows10:

m∗
j(β) =





1 for 0 ≤ β < B2 + S2/2,

(B1 − β)/(B1 −B2) for B2 + S2/2 ≤ β ≤ B1,

0 for β > B1.

Observe that for β ∈ [B2 + S2/2, B1] in equilibrium sellers lower the participation fee to

allow all bidders to enter the market with a probability of one. This holds true until the

entrance fee falls down to 0. As β further increases sellers hold zero-reserve auctions with

no entrance fee (or bonus). The entry probability in the market decreases linearly as β

further increases. For β > B1 bidders do not enter the market any more.

4 Concluding remarks

The classical auction model studies the mechanism design problem of a monopoly seller

in an environment of incomplete information regarding the valuations of the bidders. The

present paper departs from this framework by considering a model of two or more sellers,

which compete for the same pool of customers by designing trade mechanisms.

The primary message of the paper is that in a market of finitely many of buyers and

sellers the equilibrium trade mechanisms will be auctions with a trivial reserve price. The

model can be considered as a complement to McAfee’s (1993) pioneering work, in which

similar result is obtained in a model describing an infinite economy.

10See Appendix B.
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Such a situation is evident in many markets. In housing markets close substitutes

are sold via auctions; auction houses compete by selling similar products; on internet

sites such as Ebay or Amazon sellers offer identical commodities like cameras, computers

and other standardized products using a variety of sale methods: posted price, English

auctions, Dutch auctions, auctions with a buy-it-now option, auctions with secret reserve

prices, auctions with different closing rules, etc. Generally, the trade mechanism appears

to be an important instrument in the competition for customers along the characteristics

of the offered product.

Auctions with a trivial reserve price, called absolute auctions, are used as a sale method

for instance in markets for restaurant equipment and real estate. Manning (2000), a real

estate and restaurant equipment auctioneer, asserts that in his experience the public re-

sponse to a property sold via an absolute auction is much more enthusiastic than similar

property offered at an auction with a reserve price. Another (historical) example under-

scoring the benefits of an absolute auction is the rapid growth of trade through the Port

of New York relative to the trade through other East Coast ports of the United States

following the War of 1812. Engelbrecht-Wiggans and Nonnenmacher (1999) provide ev-

idence that in the two decades following the War, New York’s trade grew significantly,

while other ports stayed at roughly their 1811 level. The data they collected suggests

that this growth is due primarily to the change in the law regarding auctions of imports,

which discourages the setting of reservation prices. Both examples lend support to the

theoretical prediction of our stylized model probably because they picture scenarios in

which prospective buyers need a close scrutiny of the object to form their valuation as is

assumed in our model.

Similar result concerning the optimal auction in the monopoly case, in which bidders

can either exercise an outside option or enter the auction market have been derived in

Engelbrecht-Wiggans (1987), McAffee and McMillan (1987b) and Engelbrecht-Wiggans

(1993).
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Appendix A

Proof of lemma 2:

We have to show that the function

Ri
j

(
(C,C, . . . , C︸ ︷︷ ︸

I

); m
)

=
I∑

n=1

(
I − 1

n− 1

)
mn−1(1−m)I−n ·Bn − C

is monotonically decreasing in m. Let us denote

G(l)(m) :=

(
I − 1

l − 1

)
ml−1(1−m)I−l.

We will first show that the functions

Gn(m) :=
n∑

l=1

G(l)(m)

are strictly monotonically decreasing in m for m ∈ [0, 1] and n ∈ {1 . . . , I − 2}. We have

dG(l)(m)

dm
=

(
I − 1

l − 1

)
·ml · (1−m)I−l−2 · [l · (1 + 2 ·m)− (I − 1) ·m]

Thus dG(l)(m)
dm

R 0 for l R (I−1)·m
1+2·m . Let l be the highest integer, which is not larger than

(I−1)·m
1+2·m . Then for all n ∈ {1, . . . , l} the the functions GI−1(m) are obviously monotonically

decreasing. For n ∈ {l + 1, . . . , I − 2} observe that since

GI−1(m) ≡ 1

one obtains

Gn(m) = 1−
I−1∑

l=n+1

G(l)(m)
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Since for these l we obtained dG(l)(m)
dm

> 0 it follows again that GI−1(m) are monotonically

decreasing. The desired result follows from the inequalities

B1 · d

dm

(
G(0)(m)

)
+ B2 · d

dm

(
G(1)(m)

)
+ · · ·+ BI · d

dm

(
G(I−1)(m)

)
>

B2 · d

dm

(
G(0)(m)

)
+ B2 · d

dm

(
G(1)(m)

)
+ · · ·+ BI · d

dm

(
G(I−1)(m)

)
=

B2 · d

dm

(
G1(m)

)
+ B3 · d

dm

(
G(2)(m)

)
+ · · ·+ BI · d

dm

(
G(I−1)(m)

)
>

B3 · d

dm

(
G2(m)

)
+ B4 · d

dm

(
G(3)(m)

)
+ · · ·+ BI · d

dm

(
G(I−1)(m)

)
>

.

.

Bl+1 · d

dm

(
Gl(m)

)
+ Bl+1 · d

dm

(
G(l)(m)

)
+ · · ·+ BI · d

dm

(
G(I−1)(m)

)
>

.

.

> BI · d

dm

(
GI−1(m)

)
= 0.

Proof of lemma 1:

The seller j solves the problem of choosing (pj, zj) so as to maximize

Πj

(
(pj, zj); m∗

)
=

I∑
n=1

(
I

n

)
(m∗)n(1−m∗)I−n ·

∫ 1

0

Z
(n)
j (xi)dF (xi)

subject to the constraint

R∗ = Ri
j

(
(pj, zj); m∗

)

=
I∑

n=1

(
I − 1

n− 1

)
(m∗)n−1(1−m∗)I−n ·

∫ 1

0

(
xi · P (n)

j (xi)− Z
(n)
j (xi)

)
dF (xi).

The constraint can be rewritten as

I ·m∗ ·R∗ =
I∑

n=1

(
I

n

)
(m∗)n(1−m∗)I−n ·

∫ 1

0

(
xi · P (n)

j (xi)− Z
(n)
j (xi)

)
dF (xi).

Using this observation the maximization problem becomes equivalent to maximizing the

expression

I∑
n=1

(
I

n

)
(m∗)n(1−m∗)I−n ·

∫ 1

0

(
xi · P (n)

j (xi)

)
dF (xi)− I ·m∗ ·R∗.

The expectation obviously takes a maximum if the expression
∫ 1

0

(
xi · P (n)

j (xi)

)
dF (xi)
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is maximized for every n. Since for x−i ∈ [0, 1]n−1 we have

P
(n)
j (xi) =

∫

[0,1]n−1

pi(xi, x−i)dF (x−i)

and we consider anonymous mechanisms one obtains for x ∈ [0, 1]n

∫ 1

0

(
xi · P (n)

i (xi)

)
dF (xi) =

1

n
·

∫

[0,1]n

( n∑
i=1

xi · pi(x)

)
dF (x).

The expression takes a maximum if for every participant i the probability pi(x) is chosen

so that

pi(x) =





1 if xi is the highest valuation,

0 otherwise.

Appendix B

Proof of theorem 3:

Consider the function

ϕ(C) =
∂

∂m

( I∑
n=1

(
I

n

)
mn(1−m)I−n · Sn

)
· ∂m(C, Cj)

∂Cj

∣∣∣∣
Cj=C

+ I ·m(C, C)

+ I · ∂m(C, Cj)

∂Cj

∣∣∣∣
Cj=C

· C.

Observe that the first two terms are constants. Indeed, from the equation defining

m(C, Cj) follows that m(C, C) = 1/J and that ∂m(·)
∂Cj

∣∣∣∣
Cj=C

is negative and constant with

respect to C. The function in the last term is linear and decreasing in C. It follows that

there exists a unique C for which ϕ(C) = 0. Since it is assumed that Πj

(
Cj; m(C,Cj)

)

is concave in Cj it follows that Cj = C is the unique (global) maximizer of this function.

If β ≤ R(1/J) − C, then all bidders find it optimal to enter the market with a probability

of one and to visit each seller with a probability of 1/J. The equilibrium participation fee

in this case is C.

The function ϕ(Cj, β) is also decreasing in Cj because by assumption the function

Πj

(
Cj; m(β,Cj)

)
is concave. The unique maximizer of this function is C(β). If the

entrance fee is R(1/J) − β and bidders enter the market with a probability of one, then

their expected payoff is β. If the entrance fee is C(β) > R(1/J) − β, bidders exercise the

outside option with positive probability. In this case C(β) is the equilibrium entrance fee.
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If C(β) ≤ R(1/J) − β, then observe that for Cj < R(1/J) − β bidders do not exercise the

outside option and one obtains

∂Πj

(
Cj; m(Cj, R(1/J) − β)

)

∂Cj

∣∣∣∣
Cj<R(1/J)−β

>
∂Πj

(
Cj; m(Cj, R(1/J) − β)

)

∂Cj

∣∣∣∣
Cj=R(1/J)−β

>
∂Πj

(
Cj; C

)

∂Cj

∣∣∣∣
Cj=C

= 0.

The first inequality applies due to the concavity of Πj

(
·; ·

)
in Cj. The second inequality

applies because (as we showed) ϕ(C) =
∂Πj

(
Cj ;C

)

∂Cj

∣∣∣∣
Cj=C

is decreasing.

For Cj > R(1/J) − β ≥ C(β) bidders exercise the outside option with positive prob-

ability. This is the case because every bidder will be indifferent between entering the

market and exercising the outside option, if each seller uses the fee R(1/J) − β, and all

other bidders enter with a probability of one. One obtains

∂Πj

(
Cj; m(β,Cj)

)

∂Cj

∣∣∣∣
Cj>R(1/J)−β

<
∂Πj

(
Cj; m(β, Cj)

)

∂Cj

∣∣∣∣
Cj=C(β)

= 0.

In this case R(1/J) − β is the equilibrium participation fee.

Proof of theorem 4:

Case I = 2.

We have

Πj

(
Cj; C

)
= m2 · S2 + 2 ·m · (1−m)S1 + 2 ·m · Cj,

where m solves the equation

m ·B2 + (1−m) ·B1 − Cj = m ·B1 + (1−m) ·B2 − C.

Showing that this function is concave in Cj is equivalent to show that the function is

concave in m. After rearranging terms we obtain

Πj

(
m; C

)
= m2 · (S2 + 2B2 − 2B1) + m(2S1 + B1 −B2 + C).

Further we make use of the following lemma.

Lemma 3. For any probability distribution F the equality B1 = B2 + S2 is satisfied.

Proof. A straightforward but somewhat cumbersome proof of this statement would be to

substitute for B1, B2 and S2 with the respective expressions defining these variables and

check the equality. Here we offer a more intuitive argument. Let bidders 1 and 2 have
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the valuations x1 and x2. If bidder 1 participates alone in a second price auction with a

zero reserve price, his payoff would be x1. If he participates with bidder 2 then his payoff

would be 0 if x1 < x2 and x1 − x2 otherwise. In the former case the seller’s payoff is x1

and in the latter case x2. In both cases the sum of the buyers’ and seller’s payoff is x1

just as in the case in which bidder 1 participates alone in a second price auction. Since

this argument is valid for any x1 and x2 the claim follows.

Applying this lemma it is now easy to see that S2 + 2B2 − 2B1 = B2 − B1 < 0. The

function is concave. The proof is analogous for the function

Πj

(
Cj; β

)
= m2 · S2 + 2 ·m · (1−m)S1 + 2 ·m · Cj,

for which m solves the equation

m ·B2 + (1−m) ·B1 − Cj = β.

Case I = 3.

We have

Πj

(
Cj; C

)
= m3 · S3 + 3m2(1−m) · S2 + 3 ·m · (1−m)2S1 + 3 ·m · Cj,

where m solves the equation

m2 ·B3 +2m(1−m) ·B2 +(1−m)2 ·B1−Cj = (1−m)2 ·B3 +2m(1−m) ·B2 +m2 ·B1−C.

After solving the latter equation and substituting in the former one, we obtain

Πj

(
m; C

)
= m3 · (S3 − 3S2) + m2 · (3S2 − 6B1 + 6B2) + m · (term) + (another term).

For the second derivative with respect to m we obtain

∂2Πj

(
m; C

)

∂2m
= 6m(S3 − 3S2) + 2(3S2 − 6B1 + 6B3).

It is clear that S3 − 3S2 < 0. Further

3S2 − 6B1 + 6B2 = 3S2 − 3S2 − 3B2 − 3B1 + 6B3 = −3B2 − 3B1 + 6B3 < 0.

It follows that the function is concave. Analogously for the function

Πj

(
Cj; β

)
= m3 · (S3 + 3C) + 3m2(1−m)(S2 + 2C) + 3m(1−m)2(S1 + C),

where

m2B3 + 2m(1−m)B2 + (1−m)2B1 − C = β
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we obtain for the second derivative

∂2Πj

(
m; β

)

∂2m
= 6m(S3 + 3B3 − 3B2)− 6S2 < 6S3 − 6S2 < 0.

Proof of theorem 5:

For the uniform distribution it is easy to show that

Bn =
1

n(n + 1)
; Sn =

n− 1

n + 1
.

Then the function

Πj

(
Cj; β

)
=

I∑
n=1

(
I

n

)
mn(1−m)I−n · Sn + I ·m · Cj,

where

R(m) − Cj = β

should be shown to be concave. Again after solving the last equality and substituting in

the former one, one obtains

Πj

(
m; β

)
=

I∑
n=1

(
I

n

)
mn(1−m)I−n · n− 1

n + 1

+ I ·
I∑

n=1

(
I − 1

n− 1

)
mn(1−m)I−n

n(n + 1)
− βIm =

=
I∑

n=1

(
I

n

)
mn(1−m)I−n

(n + 1)
[n− 1 + 1]− βIm

=
I∑

n=1

(
I

n

)
mn(1−m)I−n · n

n + 1
− βIm

=
I∑

n=1

(
I

n

)
mn(1−m)I−n

︸ ︷︷ ︸
(∗)

−
I∑

n=1

(
I

n

)
mn(1−m)I−n

n + 1
︸ ︷︷ ︸

(∗∗)

−βIm.

Observe that

(∗) = [m + (1−m)]I − 1 ·m0(1−m)I = 1− (1−m)I ,

(∗∗) =
1

(I + 1) ·m
I∑

n=1

I!(I + 1)

n!(I − n)!(n + 1)
mn(1−m)I−n

=
1

(I + 1)m

I∑
n=1

(
I + 1

n + 1

)
mn+1(1−m)I−n

=
1

m(I + 1)
− (1−m)I + 1

m(I + 1)
− (1−m)I .
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Substituting (∗) and (∗∗) in the previous equation one obtains

Πj

(
m; β

)
= 1− (1−m)I − 1

m(I + 1)
+

(1−m)I+1

m(I + 1)
+ (1−m)I −mIβ

= 1 +
[(1−m)I+1 − 1]

m(I + 1)
−mIβ

= 1 +
(−m)[(1−m)I + (1−m)I−1 + · · ·+ (1−m) + 1]

m(I + 1)
−mIβ

= 1− 1

I + 1

I∑
n=0

(1−m)n −mIβ.

For the first derivative one obtains

∂Πj

(
m; β

)

∂m
=

1

I + 1

I∑
n=1

n(1−m)n−1 − Iβ

and for the second

∂2Πj

(
m; β

)

∂2m
= − 1

I + 1

I∑
n=2

n(n− 1)(1−m)n−2 ≤ 0.

The concavity of function Πj

(
Cj; m(C,Cj)

)
is difficult to show analytically for an arbi-

trary number of buyers and sellers even for F uniformly distributed. It appears however

that this property holds. For all J ∈ {2, 3, . . . , 100} and I ∈ {2, 3, . . . , 100} we computed

using a C++ program the second derivative and established that it is negative at all

discrete points between 0 and 1 with a step of 0, 00001. The source code is available from

the author upon request.

Proof of claim 1:

If seller 1 charge a participation fee of C1, seller 2 a participation fee of C and bidders

enter the market with a probability of one, then m(C, C1) solves the equation

m ·B2 + (1−m) ·B1 − C1 = (1−m) ·B2 + m ·B1 − C2 ⇔

m(C, C1) =
(C1 − C) + B2 −B1

2 · (B2 −B1)
.

The expected payoff of seller 1 is

Π1

(
C1; m(C1, C)

)
= m(C, C1)2 · (S2 + 2C1) + 2m(C, C1)(1−m(C,C1))(S1 + C1).

The equation ϕ(C) = 0 has the solution C = B1 −B2 − S2/2. Recall that in lemma 3 we

showed that B1 = B2+S2. Since the ex ante payoff of each bidder is B1/2+B2/2−S2/2 =
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B2 and bidders will enter with a probability of one if β < B2, the participation fee is S2/2.

For j = 1, 2 the function m(β, Cj) satisfies the equation

Ri
j

(
Cj; m

)
= β ⇔

m ·B2 + (1−m) ·B1 − Cj = β ⇔

m(β, Cj) =
β + Cj −B1

(B2 −B1)
.

The expected payoff of seller j is

Πj

(
(Cj, β; m

)
= m2 · (S2 + 2Cj) + 2m(1−m)(S1 + Cj).

The equation

ϕ(Cj, β) = 0

has the solution C = (β −B1)(B1 −B2 − S2)/(S2 − 2B1 + 2B2) = 0.
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